细颗粒实体打字(FET)旨在推断本文中提及的特定语义类型。 FET的现代方法主要集中于学习某种类型的外观。很少有作品直接建模类型差异,也就是说,让模型知道一种类型与其他类型不同的程度。为了减轻这个问题,我们提出了一种富含类型的FET的分层对比策略。我们的方法可以直接建模层次类型之间的差异,并提高区分多元类似类型的能力。一方面,我们将类型嵌入到实体上下文中,以使类型的信息直接感知。另一方面,我们在层次结构上设计了一个约束的对比策略,以直接建模类型差异,这可以同时感知不同粒度下类型之间的区分性。 BBN,Ontonotes和Figer的三个基准测试的实验结果表明,我们的方法通过有效建模类型差异在FET上实现了显着性能。
translated by 谷歌翻译
视觉问题回答是自然语言和愿景理解的重要任务。但是,在大多数公众视觉问题上回答了诸如VQA,CLEVR之类的数据集,这些问题是针对给定图像的特定于“她的眼睛是什么颜色?”的人类产生的。人类产生的众包问题相对简单,有时对某些实体或属性有偏见。在本文中,我们介绍了一个基于Image-Chiqa的新问题回答数据集。它包含Internet用户发布的现实查询,并结合了几个相关的开放域图像。系统应确定图像是否可以回答问题。与以前的VQA数据集不同,这些问题是现实世界中独立的查询,这些查询更加各种和无偏见。与先前的图像回程或图像捕获数据集相比,Chiqa不仅衡量了相关性,而且还可以衡量答案性,这需要更细粒度的视力和语言推理。 Chiqa包含超过40k的问题和超过200k的问题图像对。将三级2/1/0标签分配给每个对,指示完美的答案,部分答案和无关紧要。数据分析表明,Chiqa需要对语言和视觉有深入的了解,包括接地,比较和阅读。我们评估了几种最先进的视觉语言模型,例如ALBEF,表明仍然有一个很大的改进奇卡的空间。
translated by 谷歌翻译
大规模的预训练的语言模型在自然语言生成任务上取得了巨大的成功。但是,很难控制预先训练的语言模型来生成具有所需属性的句子,例如主题和情感等。最近,贝叶斯可控的语言模型(BCLM)已被证明在可控制的语言生成中有效。 BCLM并没有微调预训练的语言模型的参数,而是使用外部歧视器来指导预训练的语言模型的生成。但是,BCLMS训练和推断之间的不匹配限制了模型的性能。为了解决这个问题,在这项工作中,我们为可控语言生成提出了一个“双子座歧视者”,以减轻小计算成本的不匹配问题。我们在两个可控的语言生成任务上测试了我们的方法:情感控制和主题控制。在这两项任务上,我们的方法都达到了新的最先进的结果,从而可以自动评估。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Image Virtual try-on aims at replacing the cloth on a personal image with a garment image (in-shop clothes), which has attracted increasing attention from the multimedia and computer vision communities. Prior methods successfully preserve the character of clothing images, however, occlusion remains a pernicious effect for realistic virtual try-on. In this work, we first present a comprehensive analysis of the occlusions and categorize them into two aspects: i) Inherent-Occlusion: the ghost of the former cloth still exists in the try-on image; ii) Acquired-Occlusion: the target cloth warps to the unreasonable body part. Based on the in-depth analysis, we find that the occlusions can be simulated by a novel semantically-guided mixup module, which can generate semantic-specific occluded images that work together with the try-on images to facilitate training a de-occlusion try-on (DOC-VTON) framework. Specifically, DOC-VTON first conducts a sharpened semantic parsing on the try-on person. Aided by semantics guidance and pose prior, various complexities of texture are selectively blending with human parts in a copy-and-paste manner. Then, the Generative Module (GM) is utilized to take charge of synthesizing the final try-on image and learning to de-occlusion jointly. In comparison to the state-of-the-art methods, DOC-VTON achieves better perceptual quality by reducing occlusion effects.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.
translated by 谷歌翻译
This work studies training one-hidden-layer overparameterized ReLU networks via gradient descent in the neural tangent kernel (NTK) regime, where, differently from the previous works, the networks' biases are trainable and are initialized to some constant rather than zero. The first set of results of this work characterize the convergence of the network's gradient descent dynamics. Surprisingly, it is shown that the network after sparsification can achieve as fast convergence as the original network. The contribution over previous work is that not only the bias is allowed to be updated by gradient descent under our setting but also a finer analysis is given such that the required width to ensure the network's closeness to its NTK is improved. Secondly, the networks' generalization bound after training is provided. A width-sparsity dependence is presented which yields sparsity-dependent localized Rademacher complexity and a generalization bound matching previous analysis (up to logarithmic factors). As a by-product, if the bias initialization is chosen to be zero, the width requirement improves the previous bound for the shallow networks' generalization. Lastly, since the generalization bound has dependence on the smallest eigenvalue of the limiting NTK and the bounds from previous works yield vacuous generalization, this work further studies the least eigenvalue of the limiting NTK. Surprisingly, while it is not shown that trainable biases are necessary, trainable bias helps to identify a nice data-dependent region where a much finer analysis of the NTK's smallest eigenvalue can be conducted, which leads to a much sharper lower bound than the previously known worst-case bound and, consequently, a non-vacuous generalization bound.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译